Parameter identification methods for real redundant manipulators
نویسندگان
چکیده
This work presents the development, assessment and comparison of four techniques for identifying dynamic parameters in an industrial redundant manipulator robot with 5 degrees of freedom. Based on the Lagrange–Euler formulation, a linear model of the robot with unknown parameters is obtained. Then, these parameters are identified using the following techniques: least squares, artificial Adaline neural networks, artificial Hopfield neural networks and extended Kalman filter. The parameters identified are validated by using them for computationally simulating the performance of the redundant manipulator robot, to which are imposed reference trajectories different from the ones used in the estimation. To relate the trajectories performed by the redundant manipulator robot with the estimated parameters, the following error indexes are calculated: Residual Mean Square, Residual Standard Deviation and Agreement Index. Finally, to determine the sensitivity of the model identified – due to the variations of the estimated parameters – a new simulation is conducted on the robot, considering that its parameters vary in a restricted range. In addition, the RMS error index of the trajectories performed is determined. After this step, the parameters of the redundant manipulator robot were successfully identified and, thus, its mathematical model was known. © 2017 Universidad Nacional Autónoma de México, Centro de Ciencias Aplicadas y Desarrollo Tecnológico. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
منابع مشابه
Interval Analysis of Controllable Workspace for Cable Robots
Workspace analysis is one of the most important issues in the robotic parallel manipulator design. However, the unidirectional constraint imposed by cables causes this analysis more challenging in the cabledriven redundant parallel manipulators. Controllable workspace is one of the general workspace in the cabledriven redundant parallel manipulators due to the dependency on geometry parameter...
متن کاملهمکاری رباتها در جابجایی جسم نامعین توسط کنترلر امپدانسچندگانه
Parameter identification techniques are particularly attractive to determine the inertial parameters of robot manipulators and manipulated payloads. These parameters are particularly needed in implementation of a model-based controller for robot manipulators. In this paper, the inertial parameters of a manipulated rigid-body object have been estimated. The Newton-Euler equations will be employe...
متن کاملNeural Network Sensitivity to Inputs and Weights and its Application to Functional Identification of Robotics Manipulators
Neural networks are applied to the system identification problems using adaptive algorithms for either parameter or functional estimation of dynamic systems. In this paper the neural networks' sensitivity to input values and connections' weights, is studied. The Reduction-Sigmoid-Amplification (RSA) neurons are introduced and four different models of neural network architecture are proposed and...
متن کاملInverse Kinematics Resolution of Redundant Cooperative Manipulators Using Optimal Control Theory
The optimal path planning of cooperative manipulators is studied in the present research. Optimal Control Theory is employed to calculate the optimal path of each joint choosing an appropriate index of the system to be minimized and taking the kinematics equations as the constraints. The formulation has been derived using Pontryagin Minimum Principle and results in a Two Point Boundary Value Pr...
متن کاملKinematic Parameters Auto-Calibration of Redundant Planar 2-DOF Parallel Manipulator
Parallel manipulators have the advantage of high speed and high precision in the theory of mechanisms. This has opened up broad possibilities for the use of parallel manipulators in many fields. But in real applications, due to the inevitable manufacturing tolerances and assembling errors, the actual kinematic parameters of parallel manipulators are always unequal to the nominal values and cali...
متن کاملInverse Kinematics Resolution of Redundant Cooperative Manipulators Using Optimal Control Theory
The optimal path planning of cooperative manipulators is studied in the present research. Optimal Control Theory is employed to calculate the optimal path of each joint choosing an appropriate index of the system to be minimized and taking the kinematics equations as the constraints. The formulation has been derived using Pontryagin Minimum Principle and results in a Two Point Boundary Value Pr...
متن کامل